
1

Prepared by:

Md. Abdur Razzak

Asst. Professor.

Department of CSE

Course
Code

Credits

Exam
Hours

Total
Marks

• CSE
0612-
2208

• 1.00

• 1.00

50

Index:

Sl.
No

Name of The

Sessional

Supervisor’s

Signature With
Date

Instructor’s

Signature With
Date

1 Introduction to SQL and SQL*Plus

2 Entity-Relationship (ER) Diagrams

3 Various Data Types

4 Tables

5 MySQL Installation

6 DDL and DML Commands with

Examples

7 Key Constraints and Normalization

8 Aggregate Functions

9 Joins

10 Views

11 Index

12 PL/SQL

13 Exception Handling

14 Triggers

15 Cursors

16 Subprograms (Procedures in PL/SQL)

17 Functions in PL/SQL

Sessional -01

Introduction to SQL and SQL*Plus

Objective: To familiarize students with SQL*Plus, its interface, and basic commands.

Activities:

 Connect to the database using SQL*Plus.
 Learn and execute basic commands like SELECT, INSERT, UPDATE,

and DELETE.
 Understand the significance of DESC to view table structures.

Task: Practice connecting to SQL*Plus and running

basic SQL commands.

Practice Problems:

1. Create a table Students with fields StudentID, Name, and
Department.

2. Insert sample data into the Students table.

3. Write a query to retrieve all student names from the
table.

Instructor Signature (with date) Supervisor’s signature (with date)

Why SQL?

• SQL is a high-level language.
▫ Expresses “what to do” rather than “how to do it.”
▫ Avoid a lot of data-manipulation details needed in

procedural languages like C++ or Java.

• Database management system

figures out “best” way to execute
query.
▫ Called query optimization

• SQL is primarily a query language,
for getting information from a
database.
▫ But SQL also includes a data-definition component

for describing database schemas

Data Definition Language

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

(Not covered in 354)

Allows the specification of not only a set of relations

but also information about each relation, including:

Creating (Declaring) a Relation

 Simplest form is:

 CREATE TABLE <name> (

 <list of elements>

);

 To delete a relation:

 DROP TABLE <name>;

Elements of Table Declarations

 Most basic element: an attribute and its type.

 The most common types are:

 INT or INTEGER (synonyms).

 REAL or FLOAT (synonyms).

 CHAR(n) = fixed-length string of n characters.

 VARCHAR(n) = variable-length string of up to n
characters.

Declaring Keys

 An attribute or list of attributes may be declared PRIMARY

KEY or UNIQUE.

 Either says that no two distinct tuples of the relation may

agree in all the attribute(s) on the list.

 So keys provide a means of uniquely identifying tuples.

 There can be only one PRIMARY KEY for a relation, but

possibly several UNIQUE lists of attributes.

 No attribute of a PRIMARY KEY can ever be NULL.

(Why?)

Declaring Single-Attribute Keys

 Can place PRIMARY KEY or UNIQUE after the type in the

declaration of the attribute.

 Example: Declare branch_name as the primary key for a

bank‘s branch

 CREATE TABLE branch (

 branch_name CHAR (15)

PRIMARY KEY,

 branch_city CHAR (30),

 assets INTEGER

);

Sessional -02

Entity-Relationship (ER) Diagrams

Objective: To model real-world problems into database

diagrams.

Activities:

 Design an ER diagram for a library management system

with entities like Book, Member, and Borrow.
 Identify primary keys and relationships for the entities.

Task: Create an ER diagram for an online shopping

system.

Practice Problems:

1. Identify entities and attributes for a hospital management
system.

2. Draw an ER diagram for a university registration system.

Instructor Signature (with date) Supervisor’s signature (with date)

The Entity Relationship (E-R)

Model

 E-R Model Components

 Entities

 In E-R models an entity refers to the entity set.

 An entity is represented by a rectangle

containing the entity’s name.

 Attributes

 Attributes are represented by ovals and are

connected to the entity with a line.

 Each oval contains the name of the attribute it

represents.

 Attributes have a domain -- the attribute’s set of

possible values.

 Attributes may share a domain.

 Primary keys are underlined.

 Relationships

The Attributes of the STUDENT Entity

Basic E-R Model Entity Presentation

The Entity Relationship (E-R)

Model

 Classes of Attributes

 A simple attribute cannot be subdivided.

 Examples: Age, Sex, and Marital status

 A composite attribute can be further

subdivided to yield additional attributes.

 Examples:

– ADDRESS Street, City, State, Zip

– PHONE NUMBER  Area code,

Exchange number

The Entity Relationship (E-R)

Model

 Classes of Attributes
 A single-valued attribute can have only a

single value.

 Examples:

– A person can have only one social security

number.

– A manufactured part can have only one

serial number.

 Multivalued attributes can have many values.

 Examples:

– A person may have several college

degrees.

– A household may have several phones

with different numbers

 Multivalued attributes are shown by a double

line connecting to the entity.

The Entity Relationship (E-R)

Model

 Multivalued Attribute in Relational DBMS

 The relational DBMS cannot implement

multivalued attributes.

 Possible courses of action for the designer

 Within the original entity, create several new

attributes, one for each of the original

multivalued attribute’s components.

 Create a new entity composed of the original

multivalued attribute’s components

Splitting the Multivalued Attributes into

New Attributes

A New Entity Set Composed of Multivalued

Attribute’s Components

 A derived attribute is not physically stored

within the database; instead, it is derived by

using an algorithm.

 Example: AGE can be derived from the data of

birth and the current date.

The Entity Relationship (E-R)

Model

Figure: A Derived Attribute

 Relationships

 A relationship is an association between

entities.

 Relationships are represented by diamond-

shaped symbols.

The Entity Relationship (E-R)

Model

Figure :An Entity Relationship

 A relationship’s degree indicates the number of

associated entities or participants.

 A unary relationship exists when an association is

maintained within a single entity.

 A binary relationship exists when two entities are

associated.

 A ternary relationship exists when three entities are

associated.

The Entity Relationship (E-R)

Model

 Connectivity

 The term connectivity is used to describe the

relationship classification (e.g., one-to-one,

one-to-many, and many-to-many).

The Entity Relationship (E-R)

Model

Figure :Connectivity in an ERD

 Cardinality

 Cardinality expresses the specific number of

entity occurrences associated with one

occurrence of the related entity.

The Entity Relationship (E-R)

Model

Figure :Cardinality in an ERD

 Relationship Participation

 The participation is optional if one entity

occurrence does not require a corresponding

entity occurrence in a particular relationship.

 An optional entity is shown by a small circle

on the side of the optional entity.

The Entity Relationship (E-R)

Model

Figure : An ERD With An Optional Entity

Figure : CLASS is Optional to COURSE

Figure : COURSE and CLASS in a Mandatory Relationship

Weak Entities

 A weak entity is an entity that

 Is existence-dependent and

 Has a primary key that is partially or

totally derived from the parent entity in

the relationship.

 The existence of a weak entity is

indicated by a double rectangle.

 The weak entity inherits all or part of its

primary key from its strong counterpart.

The Entity Relationship (E-R)

Model

A Weak Entity in an ERD

 Recursive Entities

 A recursive entity is one in which a

relationship can exist between occurrences of

the same entity set.

 A recursive entity is found within a unary

relationship.

The Entity Relationship (E-R)

Model

Figure : An E-R Representation of Recursive Relationships

 Composite Entities

 A composite entity is composed of the

primary keys of each of the entities to be

connected.

 The composite entity serves as a bridge

between the related entities.

 The composite entity may contain

additional attributes.

The Entity Relationship (E-R)

Model

The M:N Relationship Between STUDENT

and CLASS

A Composite Entity in the ERD

Developing an E-R

Diagram
 The process of database design is an

iterative rather than a linear or sequential

process.

 It usually begins with a general narrative of

the organization’s operations and

procedures.

 The basic E-R model is graphically depicted

and presented for review.

 The process is repeated until the end users

and designers agree that the E-R diagram is

a fair representation of the organization’s

activities and functions.

 B.D. College Database (1)

 College is divided into several schools.

Each school is administered by a dean. A

1:1 relationship exists between DEAN

and SCHOOL.

 Each dean is a member of a group of

administrators (ADMINISTRATOR).

Deans also hold professorial rank and

may teach a class (PROFESSOR).

Administrators and professors are also

Employees.

Developing an E-R

Diagram

Developing an E-R

Diagram

 B.D. College Database (2)
 Each school is composed of several

departments.

 The smallest number of departments operated

by a school is one, and the largest number of

departments is indeterminate (N).

 Each department belongs to only a single

school.

Figure : The First B.D. College ERD Segment

 B.D. College Database (3)

 Each department offers several courses.

Developing an E-R

Diagram

Figure : The Second B.D. College ERD Segment

 B.D. College Database (4)
 A department may offer several sections

(classes) of the same course.

 A 1:M relationship exists between COURSE

and CLASS.

 CLASS is optional to COURSE

Developing an E-R

Diagram

Figure : The Third B.D. College ERD Segment

 B.D. College Database (5)
 Each department has many professors

assigned to it.

 One of those professors chairs the

department. Only one of the professors can

chair the department.

 DEPARTMENT is optional to PROFESSOR in

the “chairs” relationship.

Developing an E-R

Diagram

Figure : The Fourth B.D. College ERD Segment

 B.D. College Database (6)

 Each professor may teach up to four

classes, each one a section of a course.

 A professor may also be on a research

contract and teach no classes.

Developing an E-R

Diagram

Figure : The Fifth B.D. College ERD Segment

 B.D. College Database (7)
 A student may enroll in several classes, but

(s)he takes each class only once during any

given enrollment period.

 Each student may enroll in up to six classes

and each class may have up to 35 students in

it.

 STUDENT is optional to CLASS.

Developing an E-R

Diagram

Figure : The Sixth B.D. College ERD Segment

 B.D. College Database (8)
 Each department has several students whose

major is offered by that department.

 Each student has only a single major and

associated with a single department.

Developing an E-R

Diagram

Figure : The Seventh B.D. College ERD Segment

 B.D. College Database (9)
 Each student has an advisor in his or her

department; each advisor counsels several

students.

 An advisor is also a professor, but not all

professors advise students.

Developing an E-R

Diagram

Figure : The Eighth B.D. College ERD Segment

Entities for the B.D. College Database

 SCHOOL

 DEPARMENT

 EMPLOYEE

 PROFESSOR

 COURSE

 CLASS

 ENROLL (Bridge between

STUDENT and CLASS)

 STUDENT

Developing an E-R

Diagram

Sessional -03
Various Data Types

Objective: To explore and utilize data types in SQL for

efficient table creation.

Activities:

 Create a table to store employee details, using
 appropriate data types.

 Insert data and observe storage behaviors.

Sample Query:

CREATE TABLE Employee (EmpID

NUMBER(5), EmpName

VARCHAR2(50),
JoinDate DATE

);

Task: Experiment with different data types by creating and

populating tables.

Practice Problems:

1.Create a Products table with fields ProductID,
ProductName, Price, and
ManufactureDate.

2.Insert at least 5 records into the Products table.

3.Write a query to retrieve products priced above 500.

Instructor Signature (with date)
Supervisor’s signature (with date)

Sessional-04

Tables

Objective: To create and manipulate tables in SQL.

Activities:

 Design a Reservation table for a travel system.
 Practice inserting, updating, and deleting records.

Sample Query:

CREATE TABLE Reservation (
PNR_NO NUMBER(9) PRIMARY KEY,
PassengerName VARCHAR2(50),
No_of_Seats NUMBER(3)

);

Task: Create a relational schema for a library system, including
tables for books, members, and loans.

Practice Problems:

1. Add a column BookingDate to the Reservation table.
2. Delete all records where No_of_Seats is less than 2.
3. Retrieve all reservations made for more than 4 seats.

Instructor Signature (with date) Supervisor’s signature (with date)

DDL
INTRODUCTION

To understand the SQL Data Definition

Language

 Create

 Insert

 Delete

 Drop

 Truncate

 Alter

DDL
Creating a Database

 To initialize a new database:

 Syntax:

CREATE DATABASE database_name

 There are numerous arguments that go

along with this command but are

database specific

 Only some databases require database to

be created and space to be allocated prior

to creation of tables.

 Some databases provide graphical user

interfaces to create databases and

allocate space.

 Access only allows database to be created

using User Interface

DDL
Creating a Table

 Syntax

CREATE TABLE table_name

(Column_name datatype[(size)],

 Column_name datatype[(size)],

)

 Example

CREATE TABLE books

(ISBN char(20),

Title char(50),

AuthorID Integer,

Price float)

 Creates a table with four columns

DDL
Data Types

 Following broad categories of data types

exist in most databases:

 String Data

 Numeric Data

 Temporal Data

 Large Objects

DDL
Data Types

 Following broad categories of data types

exist in most databases:

 String Data

 Numeric Data

 Temporal Data

 Large Objects

DDL
String Data

 Fixed Length:

 Occupies the same length of space in

memory no matter how much data is

stored in them.

 Syntax:

char(n) where n is the length of the String

e.g. name char(50)

 If the variable stored for name is

‘Sanjay’ the extra 43 fields are padded

with blanks

DDL
String Data

 Variable Length string is specified

with maximum length of characters

possible in the string, however, the

allocation is sized to the size of the data

stored in memory.

 Syntax:

Varchar(n) – n is the maximum length of data

possible for the type

 There may be a restriction in the

maximum length of the data that you

can specify in the declaration which will

vary according to the database.

 All character data has to be enclosed in

single quotes during specification.

DDL
Numeric Data Types

 Store all the data related to purely
numeric data.

 Some numeric data may also be stored
as a character field e.g. zip codes

 Common Numeric Types:
 Decimal Floating point

number

 Float Floating point
number

 Integer(size) Integer of specified
length

 Money A number
which contains exactly two digits after the
decimal point

 Number A standard number
field that can hold a floating point data

Note: Different databases name their
numeric fields differently and may not
support all numeric types. They may
also support additional numeric types.

DDL
Temporal Data Types

 These represent the dates and time:

 Three basic types are supported:

 Dates

 Times

 Date-Time Combinations

DDL
Large Data Objects

 These are used for storing data

objects like files and images:

 There are two types:

 Character Large Objects (clobs)

 Binary Large Objects (blobs)

DDL
Specifying Keys- Introduction

 Unique keyword is used to specify keys.

 This ensures that duplicate rows are not created

in the database.

 Both Primary keys and Candidate Keys can be

specified in the database.

 Once a set of columns has been declared unique

any data entered that duplicates the data in

these columns is rejected.

 Specifying a single column as unique:

 Example

CREATE TABLE Studios

(studio_id Number,

name char(20),

city varchar(50),

state char(2),

UNIQUE (name))

 Here the name column has been declared as a

candidate key

DDL
Specifying Keys- Multiple Columns

 Specifying multiple columns as unique:

 Example:

CREATE TABLE Studios

(studio_id Number,

name char(20),

city varchar(50),

state char(2),

UNIQUE (name),

UNIQUE(city, state))

 Here both name & city/state

combination are declared as candidate

keys

DDL
Specifying Keys- Primary Key

 Specifying multiple columns as unique:

 To specify the Primary Key the Primary

Key clause is used

 Example:
 CREATE TABLE Studios

(studio_id Number,

name char(20),

city varchar(50),

state char(2),

PRIMARY KEY (studio_id),

UNIQUE (name),

UNIQUE(city, state)

)

DDL
Specifying Keys- Foreign Keys

 References clause is used to create a

relationship between a set of columns

in one table and a candidate key in

the table that is being referenced.

 Example:

CREATE TABLE Movies

(movie_title varchar(40),

studio_id Number REFERENCES

Studios(studio_id))

 Creates a relationship from the

Movies table to the Studios table

Modifying Records
Insert Statement

 Insert:
 Allows you to add new records to the Table

 Syntax:
 Insert into table_name[(column_list)] values

(value_list)

 Example:

INSERT INTO studios
VALUES (1, ‘Giant’, ‘Los Angeles’, ‘CA’)

INSERT INTO studios
(studio_city, studio_state, studio_name, studio_id)
VALUES (‘Burbank’, ‘CA’, ‘MPM’, 2)

 Notes1: If the columns are not specified as in the
first example the data goes in the order specified
in the table

 Notes2: There are two ways of inserting Null
values

 1. If the field has a default value of Null, you can
use an Insert statement that ignores the column
where the value is to be Null.

 2. You can specify the column in the column list
specification and assign a value of Null to the
corresponding value field.

Modifying Records
Select & Insert

 Select & Insert:
 A select query can be used in the insert

statement to get the values for the insert
statement

 Example:

INSERT INTO city_state
SELECT studio_city, studio_state FROM studios

 This selects the corresponding fields from the

studios table and inserts them into the city_state
table.

 Example:

INSERT INTO city_state
SELECT Distinct studio_city, studio_state FROM studios

 This selects the corresponding fields from the
studios table, deletes the duplicate fields and
inserts them into the city_state table. Thus the
final table has distinct rows

Modifying Records
Delete Statement

 Delete Statement:
 is used to remove records from a table of the

database. The where clause in the syntax is

used to restrict the rows deleted from the

table otherwise all the rows from the table

are deleted.

 Syntax: DELETE FROM table_name

[WHERE Condition]

 Example:

DELETE FROM City_State

WHERE state = ‘TX’

 Deletes all the rows where the state is

Texas keeps all the other rows.

Modifying Records
Update Statement

 Update Statement:
 used to make changes to existing rows of the

table. It has three parts. First, you ,must specify

which table is going to be updated. The second

part of the statement is the set clause, in which

you should specify the columns that will be

updated as well as the values that will be

inserted. Finally, the where clause is used to

specify which rows will be updated.

 Syntax:

UPDATE table_name

SET column_name1 = value1, column_name2 =

value2, …..

[WHERE Condition]

 Example:

UPDATE studios

SET studio_city = ‘New York’, studio_state = ‘NY’

WHERE studio_id = 1

 Notes1: If the condition is dropped then all the

rows are updated.

Modifying Records
Truncate Statement

 Truncate Statement:
 used to delete all the rows of a table. Delete can

also be used to delete all the rows from the table.

The difference is that delete performs a delete

operation on each row in the table and the

database performs all attendant tasks on the

way. On the other had the Truncate statement

simply throws away all the rows at once and is

much quicker. The note of caution is that

truncate does not do integrity checks on the way

which can lead to inconsistencies on the way. If

there are dependencies requiring integrity checks

we should use delete.

 Syntax: TRUNCATE TABLE table_name

 Example:

TRUNCATE TABLE studios

 This deletes all the rows of the table studios

Modifying Records
Drop Statement

 Drop Statement:

 used to remove elements from a database,

such as tables, indexes or even users and

databases. Drop command is used with a

variety of keywords based on the need.

 Drop Table Syntax: DROP TABLE

table_name

 Drop Table Example: DROP TABLE

studios

 Drop Index Syntax: DROP INDEX

table_name

 Drop Index Example: DROP INDEX

movie_index

Modifying Records
Alter Statement

 Alter Statement:
 used to make changes to the schema of

the table. Columns can be added and

the data type of the columns changed as

long as the data in those columns

conforms to the data type specified.

 Syntax:
ALTER TABLE table_name

ADD (column datatype [Default Expression])

[REFERENCES table_name (column_name)’

[CHECK condition]

 Example:
ALTER TABLE studios

ADD (revenue Number DEFAULT 0)

Modifying Records
Alter Statement

Add table level constraints:
 Syntax:
ALTER TABLE table_name
ADD ([CONSTRAINT constraint_name CHECK comparison]
[columns REFERENCES table_name (columns)]

 Example:
ALTER TABLE studios
ADD (CONSTRAINT check_state CHECK (studio_state in (‘TX’,

‘CA’, ‘WA’))

Modify Columns:
 Syntax:
ALTER TABLE table_name
MODIFY column [data type]
[Default Expression]
[REFERENCES table_name (column_name)’
[CHECK condition]

 Example:
ALTER TABLE People
MODIFY person_union varchar(10)

 Notes1: Columns can not be removed from the table
using alter. If you want to remove columns you have to
drop the table and then recreate it without the column
that you want to discard

Modifying Records
Alter Statement

 Alter Statement:
 used to make changes to the schema of the

table. Columns can be added and the data

type of the columns changed as long as the

data in those columns conforms to the data

type specified.

 Syntax:
ALTER TABLE table_name

ADD (column datatype [Default Expression])

[REFERENCES table_name (column_name)’

[CHECK condition]

 Example:
ALTER TABLE studios

ADD (revenue Number DEFAULT 0)

DDL
Specifying Keys- Single and MultiColumn Keys

 Single column keys can be defined at the

column level instead of at the table level

at the end of the field descriptions.

 MultiColumn keys still need to be

defined separately at the table level

CREATE TABLE Studios

(studio_id Number PRIMARY KEY,

name char(20) UNIQUE,

city varchar(50),

state char(2),

Unique(city, state))

 Note: Some databases require the use of

Unique Index for specification of keys.

Sessional -05

MySQL Installation

Objective: To set up MySQL on a local machine for hands-on practice.

Details:

 Installation Steps:

o Download the MySQL installer from the official website.

o Run the installer and select the appropriate setup type (e.g., Developer Default).

o Configure server options, including root password and port.

o Test the installation by connecting to the MySQL server using the CLI.

Task: Successfully set up MySQL and create a new database named College.

Practice Problems:

1. Verify MySQL installation and check server status.

2. Create a new user with specific privileges in MySQL.

3. Create a database Library and switch to it.

Instructor Signature (with date) Supervisor’s signature (with date)

Sessional -06
DDL and DML Commands with Examples

Objective: To practice defining and manipulating database structures and records.

Details:

 DDL (Data Definition Language): Commands like CREATE, ALTER, DROP.

 DML (Data Manipulation Language): Commands like INSERT, UPDATE, DELETE,

SELECT.

Activities:

 Create a table for storing product details.

 Insert sample data and retrieve specific records using WHERE conditions.

Sample Queries:

CREATE TABLE Products (

ProductID NUMBER(5),

ProductName VARCHAR2(50),

Price NUMBER(10,2)

);

INSERT INTO Products VALUES (1, 'Laptop', 75000.00);

SELECT * FROM Products WHERE Price > 50000;

Task: Practice creating and modifying tables and inserting data into them.

Practice Problems:

1. Write a query to update the price of a product in the Products table.

2. Delete a record with ProductID 3.

3. Retrieve all products with a name starting with 'L'.

Instructor Signature (with date) Supervisor’s signature (with date)

Introduction of MySQL

 MySQL is an SQL (Structured Query
Language) based relational database
management system (DBMS)

 MySQL is compatible with standard SQL

 MySQL is frequently used by PHP and Perl

 Commercial version of MySQL is also
provided (including technical support)

Resource

 MySQL and GUI Client can be
downloaded from

 http://dev.mysql.com/downloads
/

 The SQL script for creating
database „bank‟ can be found at
 http://www.cs.kent.edu/~mabuata/DB10_lab/ban

k_db.sql

 http://www.cs.kent.edu/~mabuata/DB10_lab/ban
k_data.sql

http://www.cs.kent.edu/~mabuata/DB10_lab/bank_db.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_db.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_data.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_data.sql

Command for accessing

MySQL

 Access from DB server

 >ssh dbdev.cs.kent.edu

 Start MySQL
 >mysql –u [username] –p

 >Enter password:[password]

 From a departmental machine
 >mysql -u [username] -h dbdev.cs.kent.edu –

p

 >Enter password:[password]

Entering & Editing commands

 Prompt mysql>

 issue a command

 Mysql sends it to the server for
execution

 displays the results

 prints another mysql>

 a command could span multiple
lines

 A command normally consists of
SQL statement followed by a
semicolon

Command prompt

prom
pt

meaning

mysq
l>

Ready for new command.

-> Waiting for next line of
multiple-line command.

„> Waiting for next line, waiting
for completion of a string that
began with a single quote
(“'”).

“> Waiting for next line, waiting
for completion of a string that
began with a double quote
(“"”).

`> Waiting for next line, waiting
for completion of an identifier
that began with a backtick
(“`”).

/*> Waiting for next line, waiting
for completion of a comment
that began with /*.

MySQL commands

 help \h

 Quit/exit \q

 Cancel the command \c

 Change database use

 …etc

Info about databases and

tables

 Listing the databases on the MySQL
server host

 >show databases;

 Access/change database

 >Use [database_name]

 Showing the current selected database

 > select database();

 Showing tables in the current database

 >show tables;

 Showing the structure of a table

 > describe [table_name];

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-
street, customer-city)

account (account-number, branch-name,

balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-

number)

borrower (customer-name, loan-number)

employee (employee-name, branch-name,

salary)

CREATE DATABASE

 An SQL relation is defined using the
CREATE DATABASE command:

 create database [database name]

 Example

 create database mydatabase

SQL Script for creating tables

 The SQL script for creating
database „bank‟ can be found at

http://www.cs.kent.edu/~mabuata/DB10_lab/ban

k_db.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/ban

k_data.sql

Notice: we do not have permission to create
database, so you have to type command “use
[your_account]” to work on your database.

http://www.cs.kent.edu/~mabuata/DB10_lab/bank_db.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_db.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_data.sql
http://www.cs.kent.edu/~mabuata/DB10_lab/bank_data.sql

Query

 To find all loan number for loans made at the
Perryridge branch with loan amounts greater than
$1100.

 select loan_number from loan
where branch_name = ‘Perryridge’ and
amount>1100;

 Find the loan number of those loans with loan
amounts between $1,000 and $1,500 (that is,
$1,000 and $1,500)

 select loan_number from loan
where amount between 1000 and 1500;

Query

 Find the names of all branches that have greater assets
than some branch located in Brooklyn.

 select distinct T.branch_name

 from branch as T, branch as S
where T.assets > S.assets and S.branch_city =
‘Brooklyn’;

 Find the customer names and their loan numbers for all
customers having a loan at some branch.

 select customer_name, T.loan_number, S.amount
 from borrower as T, loan as S
 where T.loan_number = S.loan_number;

Set Operation

 Find all customers who have a loan, an account,
or both:

 (select customer_name from depositor)
 union
(select customer_name from borrower);

 Find all customers who have an account but no
loan.

 (no minus operator provided in mysql)

 select customer_name from depositor

 where customer_name not in
(select customer_name from borrower);

Aggregate function

 Find the number of depositors for each branch.

 select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number =
account.account_number
group by branch_name;

 Find the names of all branches where the average
account balance is more than $500.

 select branch_name, avg (balance)
from account
group by branch_name
having avg(balance) > 500;

Nested Subqueries

 Find all customers who have both an account and
a loan at the bank.

 select distinct customer_name
from borrower
where customer_name in

 (select customer_name from depositor);

 Find all customers who have a loan at the bank
but do not have an account at the bank

 select distinct customer_name
from borrower
where customer_name not in

 (select customer_name from depositor);

Nested Subquery

 Find the names of all branches that have greater
assets than all branches located in Horseneck.

 select branch_name
 from branch
 where assets > all
 (select assets
 from branch
 where branch_city = „Horseneck‟);

Create View (new feature in mysql

5.0)

 A view consisting of branches and their customers

 create view all_customer as
 (select branch_name, customer_name
 from depositor, account
 where depositor.account_number =
account.account_number)

 union
(select branch_name, customer_name
from borrower, loan
where
borrower.loan_number=loan.loan_number);

Joined Relations

 Join operations take two relations and return as a
result another relation.

 These additional operations are typically used as
subquery expressions in the from clause

 Join condition – defines which tuples in the two
relations match, and what attributes are present in
the result of the join.

 Join type – defines how tuples in each relation that
do not match any tuple in the other relation (based
on the join condition) are treated.

Joined Relations – Datasets for

Examples

 Relation
loan

 Relation borrower

 Note: borrower information missing for L-260 and

loan information missing for L-155

Joined Relations – Examples

 Select * from loan inner join borrower on
loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

Example

 Select * from loan left join borrower on

loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

Modification of Database

 Increase all accounts with balances over $800 by
7%, all other accounts receive 8%.

 update account
 set balance = balance  1.07
 where balance > 800;

 update account
 set balance = balance  1.08
 where balance  800;

Modification of Database

 Increase all accounts with balances over $700 by
6%, all other accounts receive 5%.

 update account
 set balance =case
 when balance <= 700 then balance
*1.05
 else balance * 1.06
 end;

Modification of Database

 Delete the record of all accounts with balances
below the average at the bank.

 delete from account

 where balance < (select avg (balance) from
account);

 Add a new tuple to account

 insert into account

 values („A-9732‟, „Perryridge‟,1200);

Sessional -07

Key Constraints and Normalization

Objective: To ensure data integrity and eliminate redundancy.

Details:

 Key Constraints: PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK.

 Normalization: Organizing data into tables to reduce redundancy and improve integrity.

o 1NF: Eliminate repeating groups by ensuring each column contains atomic

values.

o 2NF: Remove partial dependencies by ensuring non-primary attributes are fully

dependent on the primary key.

o 3NF: Remove transitive dependencies by ensuring non-primary attributes depend

only on the primary key.

Activities:

 Normalize a student database to 3NF.

 Apply constraints to enforce rules.

Sample Query:

ALTER TABLE Reservation ADD CONSTRAINT FK_Passenger FOREIGN KEY (PassengerID)

REFERENCES Passenger(ID);

Task:

 Normalize an Orders database to 3NF and highlight the process step-by-step.

Practice Problems:

1. Identify redundancy in a Sales table and normalize it to 1NF, 2NF, and 3NF.

2. Apply appropriate constraints to ensure data integrity in a Customers table.

3. Design a schema for a college database and normalize it.

 The figure below demonstrates normalization from 1NF to 3NF for a Student Course

Enrollment table:

4. Unnormalized Table (UNF): | StudentID | Name | Courses | |-----------|-------|--------------

| | 101 | Alice | Math, Physics| | 102 | Bob | Chemistry |

2. 1NF: Separate courses into atomic values. | StudentID | Name | Course | |-----------|-------|-

-----------| | 101 | Alice | Math | | 101 | Alice | Physics | | 102 | Bob | Chemistry |

3. 2NF: Ensure non-key attributes depend entirely on the primary key. | StudentID | Name |

|-----------|-------| | 101 | Alice | | 102 | Bob |

StudentID Course

101 Math

101 Physics

102 Chemistry

4. 3NF: Remove transitive dependencies. | StudentID | Name | |-----------|-------| | 101 | Alice

| | 102 | Bob |

CourseID CourseName

C01 Math

C02 Physics

C03 Chemistry

StudentID CourseID

101 C01

101 C02

102 C03

Instructor Signature (with date) Supervisor’s signature (with date)

Keys: Fundamental Constraint

 In the CREATE TABLE statement,
use:

 PRIMARY KEY, UNIQUE

CREATE TABLE MovieStar (

 name CHAR(30) PRIMARY KEY,

 address VARCHAR(255),

 gender CHAR(1));

 Or, list at end of CREATE TABLE

PRIMARY KEY (name)

Keys...
 Can use the UNIQUE keyword in

same way

 …but for any number of attributes

 foreign keys, which reference
attributes of a second relation, only
reference PRIMARY KEY

 Indexing Keys

CREATE UNIQUE INDEX YearIndex
ON Movie(year)

 Makes insertions easier to check
for key constraints

Referential Integrity

Constraints
 2 rules for Foreign Keys:

Movies(MovieName, year)

ActedIn(ActorName, MovieName)

1) Foreign Key must be a reference
to a valid value in the referenced
table.

2) … must be a PRIMARY KEY in
the referenced table.

Declaring FK Constraints

 FOREIGN KEY <attributes>
REFERENCES <table>
(<attributes>)

CREATE TABLE ActedIn (

 Name CHAR(30) PRIMARY KEY,

 MovieName CHAR(30)

 REFERENCES
Movies(MovieName));

 Or, summarize at end of CREATE
TABLE

FOREIGN KEY MovieName
REFERENCES
Movies(MovieName)

 MovieName must be a PRIMARY
KEY

How to Maintain?

 Given a change to DB, there are
several possible violations:

 Insert new tuple with bogus foreign
key value

 Update a tuple to a bogus foreign
key value

 Delete a tuple in the referenced
table with the referenced foreign
key value

 Update a tuple in the referenced
table that changes the referenced
foreign key value

How to Maintain?
 Recall, ActedIn has FK

MovieName...

Movies(MovieName, year)

(Fatal Attraction, 1987)

ActedIn(ActorName, MovieName)

(Michael Douglas, Fatal Attraction)

insert: (Rick Moranis, Strange Brew)

How to Maintain?
 Policies for handling the change…

 Reject the update (default)

 Cascade (example: cascading
deletes)

 Set NULL

 Can set update and delete
actions independently in CREATE
TABLE

MovieName CHAR(30)

 REFERENCES
Movies(MovieName))

 ON DELETE SET NULL

 ON UPDATE CASCADE

Constraining Attribute

Values

 Constrain invalid values

 NOT NULL

 gender CHAR(1)

 CHECK (gender IN („F‟, „M‟))

 MovieName CHAR(30)

 CHECK (MovieName IN

 (SELECT MovieName FROM
Movies))

 Last one not the same as
REFERENCE

 The check is invisible to the Movies
table!

Constraining Values with

User Defined ‘Types’

 Can define new domains to use as
the attribute type...

CREATE DOMAIN GenderDomain
CHAR(1)

 CHECK (VALUE IN („F‟, „M‟));

 Then update our attribute
definition...

gender GenderDomain

More Complex Constraints...

 …Among several attributes in one
table

 Specify at the end of CREATE TABLE

 CHECK (gender = „F‟ OR name NOT
LIKE „Ms.%‟)

Declaring Assertions

 CREATE ASSERTION <name>
CHECK (<condition>)

CREATE ASSERTION RichPres
CHECK

 (NOT EXISTS

 (SELECT *

 FROM Studio, MovieExec

 WHERE presC# = cert#

 AND netWorth <
10000000))

Different Constraint Types

Type Where Declared When activated

Guaranteed

 to

hold?

Attribute with attribute on insertion

not if

CHECK or update

subquery

Tuple relation schema insertion or

not if

CHECK update to

subquery

 relation

Assertion database schema on change to

Yes

 any relation

 mentioned

Giving Names to Constraints

Why give names? In order to be able to alter

constraints.

Add the keyword CONSTRAINT and then a name:

ssn CHAR(50) CONSTRAINT ssnIsKey PRIMARY

KEY

CREATE DOMAIN ssnDomain INT

 CONSTRAINT ninedigits CHECK (VALUE >=

100000000

 AND VALUE <=

999999999

CONSTRAINT rightage

 CHECK (age >= 0 OR status = “dead”)

Altering Constraints

ALTER TABLE Product DROP CONSTRAINT

positivePrice

ALTER TABLE Product ADD CONSTRAINT

 positivePrice CHECK (price >= 0)

ALTER DOMAIN ssn ADD CONSTRAINT no-

leading-1s

 CHECK (value >= 200000000)

DROP ASSERTION assert1.

NORMALIZATION

Objective

 Normalization presents a set of rules

that tables and databases must follow to

be well structured.

 Historically presented as a sequence of

normal forms

First Normal From

 A table is in the first normal form iff

 The domain of each attribute contains

only atomic values, and

 The value of each attribute contains

only a single value from that domain.

In layman's terms. it means every column of

your table should only contain single values

Example

 For a library

Patron

ID

Borrowed

books

C45 B33, B44, B55

C12 B56

1-NF Solution

Patron

ID

Borrowe

d book

C45 B33

C45 B44

C45 B33

C12 B56

Example

 For an airline

Flight Weekdays

UA59 Mo We Fr

UA73 Mo Tu We

Th Fr

1NF Solution

Flight Week

day

UA59 Mo

UA59 We

UA59 Fr

UA73 Mo

UA73 We

… …

Implication for the ER

model

 Watch for entities that can have multiple

values for the same attribute

 Phone numbers, …

 What about course schedules?

MW 5:30-7:00pm

Can treat them as atomic time slots

Functional dependency

Let X and Y be sets of attributes in a table

T

 Y is functionally dependent on X in T

iff for each set x  R.X there is precisely

one corresponding set y R.Y

 Y is fully functional dependent on X in

T if Y is functional dependent on X and Y

is not functional dependent on any

proper subset of X

Example

 Book table

Book

No

Title Autho

r

Year

B1 Moby Dick H.

Melvill

e

185

1

B2 Lincoln G.

Vidal

198

4

Author attribute is:

 functionally dependent on the

pair

{ BookNo, Title}

 fully functionally dependent on

BookNo

Why it matters

 table BorrowedBooks

Book

No

Patro

n

Address Due

B1 J.

Fisher

101 Main

Street

3/2/1

5

B2 L.

Perez

202

Market

Street

2/28/

15

Address attribute is

 functionally dependent on the

pair

{ BookNo, Patron}

 fully functionally dependent on

Patron

Problems

 Cannot insert new patrons in the system

until they have borrowed books

 Insertion anomaly

 Must update all rows involving a given

patron if he or she moves.

Update anomaly

 Will lose information about patrons that

have returned all the books they have

borrowed

Deletion anomaly

Armstrong inference rules

(1974)

 Axioms:

Reflexivity: if YX, then X→Y

Augmentation: if X→Y, then WX→WY

Transitivity: if X→Y and Y→Z, then

X→Z

 Derived Rules:

Union: if X→Y and X→Z, the X→YZ

Decomposition: if X→YZ, then X→Y

and X→Z

Pseudotransitivity: if X→Y and

WY→Z, then XW→Z

Armstrong inference rules

(1974)

 Axioms are both

Sound:

when applied to a set of functional

dependencies they only produce

dependency tables that belong to the

transitive closure of that set

Complete:

can produce all dependency tables

that belong to the transitive closure of

the set

Armstrong inference rules

(1974)

 Three last rules can be derived from the

first three (the axioms)

 Let us look at the union rule:

 if X→Y and X→Z, the X→YZ

 Using the first three axioms, we have:

 if X→Y, then XX→XY same as X→XY

(2nd)

 if X→Z, then YX→YZ same as

XY→YZ (2nd)

 if X→XY and XY→YZ, then X→YZ

(3rd)

Second Normal Form

 A table is in 2NF iff

 It is in 1NF and

no non-prime attribute is dependent

on any proper subset of any candidate

key of the table

 A non-prime attribute of a table is an

attribute that is not a part of any

candidate key of the table

 A candidate key is a minimal superkey

Example

 Library allows patrons to request books

that are currently out

Book

No

Patro

n

PhoneNo

B3 J.

Fisher

555-1234

B2 J.

Fisher

555-1234

B2 M.

Amer

555-4321

Example

 Candidate key is {BookNo, Patron}

 We have

Patron → PhoneNo

 Table is not 2NF

Potential for

 Insertion anomalies

Update anomalies

Deletion anomalies

2NF Solution

 Put telephone number in separate

Patron table

Book

No

Patro

n

B3 J.

Fisher

B2 J.

Fisher

B2 M.

Amer

Patr

on

PhoneN

o

J.

Fish

er

555-

1234

M.

Ame

r

555-

4321

Third Normal Form

 A table is in 3NF iff

 it is in 2NF and

all its attributes are determined only

by its candidate keys and not by any

non-prime attributes

Example

 Table BorrowedBooks

Book

No

Patro

n

Address Due

B1 J.

Fisher

101 Main

Street

3/2/

15

B2 L.

Perez

202

Market

Street

2/28

/15

 Candidate key is BookNo

 Patron → Address

3NF Solution

 Put address in separate Patron

table

Book

No

Patro

n

Due

B1 J.

Fisher

3/2/1

5

B2 L.

Perez

2/28/

15

Patron Address

J.

Fisher

101 Main

Street

L.

Perez

202 Market

Street

Sessional -08

Aggregate Functions

Objective: To summarize data using built-in SQL functions.

Details:

 Functions: SUM, AVG, COUNT, MAX, MIN.

 GROUP BY: Group data for aggregation.

 HAVING: Filter aggregated data.

Activities:

 Calculate the total sales for each product category.

 Find the average salary of employees in each department.

Sample Query:

SELECT DeptID, AVG(Salary) AS AvgSalary FROM Employee GROUP BY DeptID HAVING

AVG(Salary) > 50000;

Task:

 Write a query to calculate the maximum, minimum, and average price of products in a

Products table.

Practice Problems:

1. Write a query to count the number of employees in each department.

2. Find the total and average marks of students grouped by subject.

3. Retrieve the highest and lowest sale amounts in a Sales table.

Instructor Signature (with date) Supervisor’s signature (with date)

©Silberschatz, Korth and Sudarshan 3.145 Database System Concepts - 5th Edition, June 15, 2005

Aggregate Functions

 These functions operate on the multiset of values of a

column of a relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

©Silberschatz, Korth and Sudarshan 3.146 Database System Concepts - 5th Edition, June 15, 2005

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge

branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

 from account

 where branch_name = ‗Perryridge‘

select count (*)

 from customer

select count (distinct customer_name)

 from depositor

©Silberschatz, Korth and Sudarshan 3.147 Database System Concepts - 5th Edition, June 15, 2005

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions

must

 appear in group by list

select branch_name, count (distinct customer_name)

 from depositor, account

 where depositor.account_number =

account.account_number

 group by branch_name

©Silberschatz, Korth and Sudarshan 3.148 Database System Concepts - 5th Edition, June 15, 2005

Aggregate Functions – Having

Clause

 Find the names of all branches where the average account

balance is more than $1,200.

 Note: predicates in the having clause are applied after

the

 formation of groups whereas predicates in the

where

 clause are applied before forming groups

select branch_name, avg (balance)

 from account

 group by branch_name

 having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan 3.149 Database System Concepts - 5th Edition, June 15, 2005

Null Values

 It is possible for tuples to have a null value, denoted by

null, for some of their attributes

 null signifies an unknown value or that a value does not

exist.

 The predicate is null can be used to check for null values.

 Example: Find all loan number which appear in the

loan relation with null values for amount.

 select loan_number

 from loan

 where amount is null

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 However, aggregate functions simply ignore nulls

 More on next slide

©Silberschatz, Korth and Sudarshan 3.150 Database System Concepts - 5th Edition, June 15, 2005

Null Values and Three Valued

Logic

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true, (unknown or false) =

unknown

 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and

unknown) = false,

 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 ―P is unknown” evaluates to true if predicate P

evaluates to unknown

 Result of where clause predicate is treated as false if it

evaluates to unknown

©Silberschatz, Korth and Sudarshan 3.151 Database System Concepts - 5th Edition, June 15, 2005

Null Values and Aggregates

 Total all loan amounts

 select sum (amount)

 from loan

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore

tuples with null values on the aggregated attributes.

Experiment -09

Joins

Objective: To combine data from multiple tables.

Details:

 INNER JOIN: Retrieve matching rows.

 LEFT JOIN: Retrieve all rows from the left table.

 RIGHT JOIN: Retrieve all rows from the right table.

 FULL JOIN: Retrieve all matching rows and unmatched rows from both tables.

Activities:

 Practice joins on Employee and Department tables.

Sample Query:

SELECT e.EmpID, e.Name, d.DeptName

FROM Employee e

INNER JOIN Department d ON e.DeptID = d.DeptID;

Task:

 Write a query using a LEFT JOIN to retrieve all employees and their corresponding

department names, even if the department is not assigned.

Practice Problems:

1. Write a query to retrieve students and their enrolled courses using a JOIN on Students

and Courses tables.

2. Use a FULL JOIN to find records in both Products and Sales tables.

3. Perform an INNER JOIN on Orders and Customers tables to retrieve orders with

customer details.

Let me know if you’d like more topics expanded or additional illustrations!

more topic

Instructor Signature (with date) Supervisor’s signature (with date)

Experiment -10

Views

Objective:

To simplify complex queries and abstract data by using virtual tables.

Details:

 View: A virtual table created by a SELECT statement. It doesn’t store data physically but

provides an abstraction for ease of querying.
 Advantages:

o Simplifies complex queries.

o Enhances security by restricting access to specific data.

o Improves maintainability.

Activities:

 Create and manipulate views for specific datasets.

 Use views to abstract data and provide tailored information for different user groups.

Sample Query:

CREATE VIEW EmpDept AS

SELECT e.EmpID, e.Name, d.DeptName

FROM Employee e

INNER JOIN Department d ON e.DeptID = d.DeptID;

Task:

 Create a view that displays the total salary of employees by department.

Practice Problems:

1. Create a view to show products and their total sales.

2. Write a query to fetch data from a view and filter it by a specific range.

3. Update data through an updatable view and observe the impact on the base table.

Instructor Signature (with date) Supervisor’s signature (with date)

©Silberschatz, Korth and Sudarshan 3.156 Database System Concepts - 5th Edition, June 15, 2005

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is

nested within another query.

 A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan 3.157 Database System Concepts - 5th Edition, June 15, 2005

Example Query

 Find all customers who have both an account and a loan at

the bank.

 Find all customers who have a loan at the bank but do not

have

 an account at the bank

select distinct customer_name

 from borrower

 where customer_name not in (select

customer_name

 from depositor)

select distinct customer_name

 from borrower

 where customer_name in (select

customer_name

 from depositor)

©Silberschatz, Korth and Sudarshan 3.158 Database System Concepts - 5th Edition, June 15, 2005

Example Query

 Find all customers who have both an account and a loan at

the Perryridge branch

 Note: Above query can be written in a much simpler manner.

The

 formulation above is simply to illustrate SQL features.

select distinct customer_name

 from borrower, loan

 where borrower.loan_number =

loan.loan_number and

 branch_name = ‗Perryridge‘ and

 (branch_name, customer_name) in

 (select branch_name,

customer_name

 from depositor, account

 where depositor.account_number =

 account.account_number)

©Silberschatz, Korth and Sudarshan 3.159 Database System Concepts - 5th Edition, June 15, 2005

Set Comparison

 Find all branches that have greater assets than some

branch located in Brooklyn.

 Same query using > some clause

select branch_name

 from branch

 where assets > some

 (select assets

 from branch

 where branch_city = ‘Brooklyn’)

select distinct T.branch_name

 from branch as T, branch as S

 where T.assets > S.assets and

 S.branch_city = ‘
Brooklyn’

©Silberschatz, Korth and Sudarshan 3.160 Database System Concepts - 5th Edition, June 15, 2005

Definition of Some Clause

 F <comp> some r t r such that (F <comp> t

)

Where <comp> can be:     

0

5

6

(5 <

some

) =

true

0

5

0

) = false

5

0

5 (5 

some

) = true (since 0 

5)

(read: 5 < some tuple in the relation)

(5 <

some

) = true (5 = some

(= some)  in

However, ( some)  not in

©Silberschatz, Korth and Sudarshan 3.161 Database System Concepts - 5th Edition, June 15, 2005

Example Query

 Find the names of all branches that have greater assets

than all branches located in Brooklyn.

select branch_name

 from branch

 where assets > all

 (select assets

 from branch

 where branch_city = ‗Brooklyn‘)

©Silberschatz, Korth and Sudarshan 3.162 Database System Concepts - 5th Edition, June 15, 2005

Definition of all Clause

 F <comp> all r t r (F <comp> t)

0

5

6

(5 < all) = false

6

10

4

) = true

5

4

6 (5  all) = true (since 5  4 and 5  6)

(5 < all

) = false (5 = all

( all)  not in

However, (= all)  in

©Silberschatz, Korth and Sudarshan 3.163 Database System Concepts - 5th Edition, June 15, 2005

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

©Silberschatz, Korth and Sudarshan 3.164 Database System Concepts - 5th Edition, June 15, 2005

Example Query

 Find all customers who have an account at all branches

located in Brooklyn.

select distinct S.customer_name

 from depositor as S

 where not exists (

 (select branch_name

 from branch

 where branch_city = ‗Brooklyn‘)

 except

 (select R.branch_name

 from depositor as T, account as R

 where T.account_number =

R.account_number and

 S.customer_name =

T.customer_name))

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan 3.165 Database System Concepts - 5th Edition, June 15, 2005

Test for Absence of Duplicate

Tuples

 The unique construct tests whether a subquery has any

duplicate tuples in its result.

 Find all customers who have at most one account at the

Perryridge branch.

 select T.customer_name
 from depositor as T
 where unique (

 select R.customer_name

 from account, depositor as R

 where T.customer_name = R.customer_name and

 R.account_number =

account.account_number and

 account.branch_name = ‘ Perryridge‘)

©Silberschatz, Korth and Sudarshan 3.166 Database System Concepts - 5th Edition, June 15, 2005

Example Query

 Find all customers who have at least two accounts at the

Perryridge branch.

select distinct T.customer_name

from depositor as T

where not unique (

 select R.customer_name

 from account, depositor as R

 where T.customer_name = R.customer_name and

 R.account_number = account.account_number

and

 account.branch_name = ‘Perryridge’)

©Silberschatz, Korth and Sudarshan 3.167 Database System Concepts - 5th Edition, June 15, 2005

Derived Relations

 SQL allows a subquery expression to be used in the from

clause

 Find the average account balance of those branches where

the average account balance is greater than $1200.

 select branch_name, avg_balance

 from (select branch_name, avg (balance)

 from account

 group by branch_name)

 as branch_avg (branch_name, avg_balance)

 where avg_balance > 1200

 Note that we do not need to use the having clause, since

we compute the temporary (view) relation branch_avg in the

from clause, and the attributes of branch_avg can be used

directly in the where clause.

©Silberschatz, Korth and Sudarshan 3.168 Database System Concepts - 5th Edition, June 15, 2005

With Clause

 The with clause provides a way of defining a temporary

view whose definition is available only to the query in

which the with clause occurs.

 Find all accounts with the maximum balance

 with max_balance (value) as

 select max (balance)

 from account

 select account_number

 from account, max_balance

 where account.balance = max_balance.value

©Silberschatz, Korth and Sudarshan 3.169 Database System Concepts - 5th Edition, June 15, 2005

Complex Query using With Clause

 Find all branches where the total account deposit is greater

than the average of the total account deposits at all

branches.

 with branch_total (branch_name, value) as

 select branch_name, sum (balance)

 from account

 group by branch_name

 with branch_total_avg (value) as

 select avg (value)

 from branch_total

 select branch_name

 from branch_total, branch_total_avg

 where branch_total.value >= branch_total_avg.value

©Silberschatz, Korth and Sudarshan 3.170 Database System Concepts - 5th Edition, June 15, 2005

Views

 In some cases, it is not desirable for all users to see the

entire logical model (that is, all the actual relations stored in

the database.)

 Consider a person who needs to know a customer‘s loan

number but has no need to see the loan amount. This

person should see a relation described, in SQL, by

 (select customer_name, loan_number

 from borrower, loan

 where borrower.loan_number =

loan.loan_number)

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a ―virtual relation‖ is called a view.

©Silberschatz, Korth and Sudarshan 3.171 Database System Concepts - 5th Edition, June 15, 2005

View Definition

 A view is defined using the create view statement

which has the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression.

The view name is represented by v.

 Once a view is defined, the view name can be used to

refer to the virtual relation that the view generates.

 View definition is not the same as creating a new

relation by evaluating the query expression

 Rather, a view definition causes the saving of an

expression; the expression is substituted into

queries using the view.

©Silberschatz, Korth and Sudarshan 3.172 Database System Concepts - 5th Edition, June 15, 2005

Example Queries

 A view consisting of branches and their customers

 Find all customers of the Perryridge branch

create view all_customer as

 (select branch_name, customer_name

 from depositor, account

 where depositor.account_number =

 account.account_number)

 union

 (select branch_name, customer_name

 from borrower, loan

 where borrower.loan_number =

loan.loan_number)

select customer_name

 from all_customer

 where branch_name = ‗Perryridge‘

©Silberschatz, Korth and Sudarshan 3.173 Database System Concepts - 5th Edition, June 15, 2005

Views Defined Using Other Views

 One view may be used in the expression defining another

view

 A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if

either v1 depends directly to v2 or there is a path of

dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on

itself.

©Silberschatz, Korth and Sudarshan 3.174 Database System Concepts - 5th Edition, June 15, 2005

View Expansion

 A way to define the meaning of views defined in terms of

other views.

 Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.

 View expansion of an expression repeats the following

replacement step:

 repeat

 Find any view relation vi in e1
 Replace the view relation vi by the expression

defining vi

 until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop

will terminate

Experiment -11

Index

Objective:

To enhance the performance of database queries by creating and using indexes.

Details:

 Index: A database object used to optimize the speed of query execution.

 Types of Indexes:

o Single-column Index: Speeds up searches on one column.

o Composite Index: Optimizes searches on multiple columns.

o Unique Index: Ensures no duplicate values in a column.

 Trade-offs: Improves query performance but may slow down insert and update

operations.

Activities:

 Create indexes on large tables to improve query performance.

 Drop unnecessary indexes and analyze execution times.

Sample Query:

CREATE INDEX idx_EmployeeName ON Employee(Name);

Task:

 Add an index to the Products table for optimizing search queries by ProductName.

Practice Problems:

1. Create a composite index for the Orders table using OrderDate and OrderStatus.

2. Drop an index and analyze its effect on query performance.

3. Write a query to display all indexes created for a table.

Instructor Signature (with date) Supervisor’s signature (with date)

1/24/2025 UGV 177

Representing Data

Attributes are represented in fixed or variable
length collections called “fields”

Fields in turn are put into fixed or variable
length collections called records.

Records are stored in physical blocks.

A collection of records that forms a relation is
stored as a collection of blocks called a file.

 This file different than OS file. How?

 Organization is different.

 Extra indices to accommodate easy search
and access.

1/24/2025 UGV 178

Basic Concepts (indexing)

Indexing works the same way as
a catalog for a book in a library.

Indexing needs to be efficient to
allow fast access to records.

Two types of indices:

 ordered indices and

 hash indices

1/24/2025 UGV 179

Techniques and
Evaluation

Access types : types of accesses that are
supported efficiently. Search by specific
value or by range.

Access time: Time sit takes to find a
particular data or a set of data.

Insertion time: Time it takes to insert a new
item.

Deletion time: Time it takes to delete an
item.

Space overhead : Additional space occupied
by the index structure.

1/24/2025 UGV 180

Ordered Indices

To gain fast access to records in a file
we can use an index structure.

If the file containing the records is
sequentially ordered, the index whose
search key specifies the sequential
order of the file is the primary key
index.

Primary key indices are also called
clustering indices.

1/24/2025 UGV 181

Primary Index

Assume that all files are ordered
sequentially on some search key.

Such files, with primary key on
the search key, are called index-
sequential files.

These files accommodate both
sequential and random access to
individual records.

1/24/2025 UGV 182

Dense and Sparse Index

Dense index:
 An index record appears for every search

key value in the file.

 The index record contains the search key
and a pointer to the first data record with
that search-key value.

Sparse index:
 An index is created only for a few values.

Each index contains a value and pointer
to first record that contains that value.

1/24/2025 UGV 183

Dense Index

Brighton A-217 750

Downtown A-101 500

Downtown A-110 600

Mianus A-215
700
Perryridge A-102
400
Perryridge A-201 900

 Perryridge A-218 700

Redwood A-222 700

Round Hill A-305 350

Brighton

Downtown

Mianus

Perryridge

Redwood

Round Hill

1/24/2025 UGV 184

Sparse Index

Brighton A-217 750

Downtown A-101 500

Downtown A-110 600

Mianus A-215
700
Perryridge A-102
400
Perryridge A-201 900

 Perryridge A-218 700

Redwood A-222 700

Round Hill A-305 350

Brighton

Mianu
s
Redwood

Which one is better? Dense or sparse? It is a trade off
Between access time and space overhead.

1/24/2025 UGV 185

Multi-level Indices
Indices themselves may become too
large for efficient processing.

Example:
 Consider file with 100000 records with 10

records in a block.

 With sparse index and one index per
block we have about 10,000 indices.

 Assuming 100 indices fit into a block we
need about 100 blocks.

 It is desirable to keep the index file in the
main memory.

 Problem: Searching a large index file
becomes expensive.

1/24/2025 UGV 186

Multi-level Index

Solution: Index the index file. We
treat the index as we would treat
any other sequential file and
construct a sparse index on the
primary index.

We binary-search the outer level
index to find the largest search
key less than or equal to the one
we desire.

Two-level sparse index ; Figure
11.4

1/24/2025 UGV 187

Secondary Index

Secondary index is on attributes
whose values are not stored
sequentially.

If the search key of a secondary
index is not a candidate key, the
index needs to be dense too.

We can use an extra level of
indirection with buckets at the
second level.

See fig.11.5

1/24/2025 UGV 188

Secondary Index

Brighton A-217 750

Downtown A-101 500

Downtown A-110 600

Mianus A-215
700
Perryridge A-102
400
Perryridge A-201 900

 Perryridge A-218 700

Redwood A-222 700

Round Hill A-305 350

350

400

500

600

700

750

900

1/24/2025 UGV 189

B+ Tree Index Files

Main disadvantage of the index-
sequential file organization is that
performance degrades as the file
grows both for index lookups and
sequential scans.

B+ tree index structure is most widely
used of several index structures that
maintain their efficiency despite
insertion and deletion of data.

1/24/2025 UGV 190

B+ Tree Index files

A B+ index tree is a balanced
tree in which every path from
root to leaf is of same length and
each non-leaf node has between
ceiling(n/2) and n nodes where n
is fixed.

Typical node is a B+ tree:
n-1 search keys K1, K2,… Kn-1

n pointers P1, P2, …Pn

1/24/2025 UGV 191

B+ Tree Node

P1 K1 P2 K2 …… Pn-1 Kn-1 Pn

1/24/2025 UGV 192

B+ Tree (contd.)

Structure of a B+ tree

Queries on B+ trees

Updates on B+ trees (insertion ,
deletion)

B+ file organization

B Tree variation of B+ tree :
avoiding redundancy

1/24/2025 UGV 193

Hashing

Can we avoid the IO operations
that the result from accessing the
index file?

Hashing offers a way.

It also provides a way of
constructing indices (which need
nor be sequential).

We will study static and dynamic
hashing.

1/24/2025 UGV 194

Hash File Organization

Address of the disk block containing a
desired record is computed using a
function (hash function) and the
search key.

Let K denote set of all search keys, B
denote set of all bucket addresses.
Hash function h is a function that
maps K to B.

Bucket is typically a disk block.

1/24/2025 UGV 195

Operations

To insert a record with Ki as key,
compute h(Ki) which gives the
address of the bucket for the record.
If there is space in the bucket then it
is stored that bucket. (else chaining?)

To lookup a record with key Ki,
compute h(ki). Check with every
record in the bucket to obtain the
record.

To delete a similar hash, find and
delete is followed.

1/24/2025 UGV 196

Hash Functions

Hash function should be chosen so
that

 The distribution of records is uniform.

 The distribution is random.

Handling bucket overflows:

 May occur due to insufficient number of
buckets.

 Due to bucket skew.

 Solution: Overflow buckets, chaining,
double hashing, linear probing, quadratic
probing

1/24/2025 UGV 197

Hash Indices

Hashing can be used for
organizing indices.Hash index
organizes search keys with their
associated pointers.

See Fig.11.22

Typically only secondary indices
need to be organized using
hashing.

1/24/2025 UGV 198

Dynamic Hashing

Many of today‟s databases grow very
large in (a short) time.

If you use static hash function we
have three option:

 Choose hash function based on current
size,

 Choose hash function based on
anticipated size.

 Periodically restructure the hash file in
response to growth.

Another solution: dynamic hashing.

1/24/2025 UGV 199

Dynamic Hash
Techniques

Dynamic hash techniques allow the
hash function to be modified
dynamically to accommodate the
growth and shrinkage of the
database.

It is also known as extendable
hashing.

Extendable hashing copes with the
growth in the database size by
splitting and coalescing buckets as the
database grows and shrinks.

Instructor Signature (with date)

(with date)

Supervisor’s signature

Experiment -13

Exception Handling

Objective:

To handle runtime errors in SQL and PL/SQL efficiently.

Details:

 Types of Exceptions:

o Predefined Exceptions: Standard errors like NO_DATA_FOUND and ZERO_DIVIDE.

o User-defined Exceptions: Custom errors declared by the user.

 Structure: Use the EXCEPTION block to handle errors gracefully.

Activities:

 Write PL/SQL blocks to handle common runtime errors.

 Create user-defined exceptions for specific scenarios.

Sample Code:

DECLARE

my_error EXCEPTION;

BEGIN

IF 1 = 1 THEN

RAISE my_error;

END IF;

EXCEPTION

WHEN my_error THEN

DBMS_OUTPUT.PUT_LINE('Custom exception raised.');

END;

/

Task:

 Write a PL/SQL block to handle both predefined and user-defined exceptions.

Practice Problems:

1. Create a program to catch NO_DATA_FOUND errors.

2. Write a PL/SQL block to handle ZERO_DIVIDE exceptions.

3. Define a custom exception for invalid user input and handle it.

EXCEPTIONS

Bordoloi and

Bock

Errors

• Two types of errors can be found in a
program: compilation errors and runtime
errors.

• There is a special section in a PL/SQL
block that handles the runtime errors.

• This section is called the exception-
handling section, and in it, runtime errors
are referred to as exceptions.

• The exception-handling section allows
programmers to specify what actions
should be taken when a specific exception
occurs.

Bordoloi and

Bock

Exception Handling

• In order to handle run time errors in the
program, an exception handler must be
added.

• The exception-handling section has the
following structure:

 EXCEPTION

 WHEN EXCEPTION_NAME

 THEN

 ERROR-PROCESSING
STATEMENTS;

• The exception-handling section is placed
after the executable section of the block.

Bordoloi and

Bock

The section of the example
in bold letters shows the
exception-handling section
of the block.

When this example is
executed with values of 4
and 0 for variables v_num1
and v_num2, respectively,
the following output is
produced:

Enter value for sv_num1:
4

old 2: v_num1 integer :=
&sv_num1;

new 2: v_num1 integer :=
4;

Enter value for sv_num2:
0

old 3: v_num2 integer :=
&sv_num2;

new 3: v_num2 integer :=
0;

A number cannot be
divided by zero.

PL/SQL procedure
successfully completed.

Example

DECLARE

 v_num1 integer :=
&sv_num1;

 v_num2 integer :=
&sv_num2;

 v_result number;

BEGIN

 v_result := v_num1 /
v_num2;

 DBMS_OUTPUT.PUT_LINE
(„v_result: ‟| |v_result);

EXCEPTION

 WHEN ZERO_DIVIDE

 THEN

DBMS_OUTPUT.PUT_LI
NE

 (‘A number cannot be
divided by zero.’);

END;

Bordoloi and

Bock

Exception Handling

• This output shows that once an attempt to
divide v_num1 by v_num2 was made, the
exception-handling section of the block was
executed.

• Therefore, the error message specified by
the exception-handling section was displayed
on the screen.

• This example illustrates several advantages
of using an exception-handling section.

• You have probably noticed that the output
looks cleaner. Even though the error
message is still displayed on the screen, the
output is more informative.

• In short, it is oriented more toward a user
than a programmer.

Bordoloi and

Bock

Exception Handling

• In addition, an exception-handling section
allows a program to execute to
completion, instead of terminating
prematurely.

• Another advantage offered by the
exception-handling section is isolation of
error-handling routines. In other words,
all error-processing code for a specific
block is located in the single section. As a
result, the logic of the program becomes
easier to follow and understand.

• Finally, adding an exception-handling
section enables event-driven processing
of errors.

• In case of a specific exception event, the
exception-handling section is executed.

Bordoloi and

Bock

Exception Handling

• Just like in the example shown earlier, in
case of the division by 0, the exception-
handling section was executed.

• In other words, the error message
specified by the
DBMS_OUTPUT.PUT_LINE statement was
displayed on the screen.

Bordoloi and

Bock

BUILT-IN EXCEPTIONS

When a built-in exception occurs, it is said
to be raised implicitly.

In other words, if a program breaks an
Oracle rule, the control is passed to the
exception-handling section of the block.

At this point, the error processing
statements are executed.

It is important for you to realize that after
the exception-handling section of the block
has executed, the block terminates.

Control will not return to the executable
section of this block.

Bordoloi and

Bock

Example

DECLARE

 v_student_name
VARCHAR2(50);

BEGIN

 SELECT first_name||„
‟||last_name

 INTO v_student_name

 FROM student

 WHERE student_id = 101;

 DBMS_OUTPUT.PUT_LINE

 („Student name
is‟||v_student_name);

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE
(„There is no such
student‟);

END;

This example produces the
following output:
There is no such student
PL/SQL procedure

successfully completed.

Because there is no record
in the STUDENT table with
student ID 101, the
SELECT INTO statement
does not return any rows.
As a result, control passes
to the exception-handling
section of the block, and
the error message “There
is no such student” is
displayed on the screen.
Even though there is a
DBMS_OUTPUT.PUT_LINE
statement right after the
SELECT statement, it will
not be executed because
control has been
transferred to the
exception-handling
section.

Bordoloi and

Bock

BUILT-IN EXCEPTIONS
Control will never return to the executable
section of this block, which contains the
DBMS_OUTPUT.PUT_LINE statement.
While every Oracle runtime error has a
number associated with it, it must be
handled by its name in the exception-
handling section.
One of the outputs from the previous
example has the following error message:

 ORA-01476: divisor is equal to
zero

 where ORA-01476 stands for error number.
This error number refers to the error
named ZERO_DIVIDE.
So, some common Oracle runtime errors
are predefined in the PL/SQL as
exceptions.

Bordoloi and

Bock

BUILT-IN EXCEPTIONS

The list shown below explains some
commonly used predefined exceptions and
how they are raised:
NO_DATA_FOUND This exception is
raised when a SELECT INTO statement,
which makes no calls to group functions,
such as SUM or COUNT, does not return
any rows.
For example, you issue a SELECT INTO
statement against STUDENT table where
student ID equals 101.
If there is no record in the STUDENT table
passing this criteria (student ID equals
101), the NO_DATA_FOUND exception is
raised.

Bordoloi and

Bock

TOO_MANY_ROWS

This exception is raised when a SELECT
INTO statement returns more than one
row.
By definition, a SELECT INTO can return
only single row.
If a SELECT INTO statement returns more
than one row, the definition of the SELECT
INTO statement is violated.
This causes the TOO_MANY_ROWS
exception to be raised.
For example, you issue a SELECT INTO
statement against the STUDENT table for a
specific zip code.
There is a big chance that this SELECT
statement will return more than one row
because many students can live in the
same zip code area.

Bordoloi and

Bock

ZERO_DIVIDE

This exception is raised when a division
operation is performed in the program and
a divisor is equal to zero.
Previous example in the illustrates how this
exception is raised.

LOGIN_DENIED

This exception is raised when a user is
trying to login on to Oracle with invalid
username or password.

Bordoloi and

Bock

PROGRAM_ERROR

This exception is raised when a PL/SQL
program has an internal problem.

VALUE_ERROR

This exception is raised when conversion or
size mismatch error occurs.
For example, you select student‟s last
name into a variable that has been defined
as VARCHAR2(5).
If student‟s last name contains more than
five characters, VALUE_ERROR exception is
raised.

Bordoloi and

Bock

DUP_VALUE_ON_INDEX

This exception is raised when a program
tries to store a duplicate value in the
column or columns that have a unique
index defined on them.
For example, you are trying to insert a
record into the SECTION table for the
course number “25,” section 1.
If a record for the given course and section
numbers already exists in the SECTION
table, DUP_VAL_ON_INDEX exception is
raised because these columns have a
unique index defined on them.

Bordoloi and

Bock

HANDLING DIFFERENT EXCEPTIONS

So far, you have seen examples of the
programs able to handle a single exception
only.
For example, a PL/SQL contains an
exception-handler with a single exception
ZERO_DIVIDE.
However, many times in the PL/SQL block
you need to handle different exceptions.
Moreover, often you need to specify
different actions that must be taken when
a particular exception is raised.

Bordoloi and

Bock

DECLARE
 v_student_id NUMBER :=

&sv_student_id;
 v_enrolled VARCHAR2(3) := 'NO';
BEGIN
 DBMS_OUTPUT.PUT_LINE
 („Check if the student is enrolled‟);
SELECT „YES‟
INTO v_enrolled
FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE
 („The student is enrolled into one

course‟);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE(„The

student is not enrolled‟);
WHEN TOO_MANY_ROWS
 THEN
 DBMS_OUTPUT.PUT_LINE
 („The student is enrolled into

many courses‟);
END;

This example contains
two exceptions in the
single exception
handling section.
The first exception,
NO_DATA_FOUND, will
be raised if there are
no records in the
ENROLLMENT table for
a particular student.
The second exception,
TOO_MANY_ROWS,
will be raised if a
particular student is
enrolled into more than
one course.

Bordoloi and

Bock

OTHERS Handler

You have seen examples of exception-
handling sections that have particular
exceptions, such as NO_DATA_FOUND or
ZERO_DIVIDE.

However, you cannot always predict
beforehand what exception might be
raised by your PL/SQL block.

In cases like this, there is a special
exception handler called OTHERS.

All predefined Oracle errors (exceptions)
can be handled with the help of the
OTHERS handler.

Bordoloi and

Bock

Example

DECLARE
 v_instructor_id NUMBER :=

&sv_instructor_id;
 v_instructor_name

VARCHAR2(50);
BEGIN
 SELECT first_name||'

'||last_name
 INTO v_instructor_name
 FROM instructor
 WHERE instructor_id =

v_instructor_id;
 DBMS_OUTPUT.PUT_LINE
 („Instructor name is‟

||v_instructor_name);
EXCEPTION
 WHEN OTHERS
 THEN

DBMS_OUTPUT.PUT_LINE
(„An error has occurred‟);

END;

Bordoloi and

Bock

• When run, this example

produces the following

output:

Enter value for sv_instructor_id:

100

old 2: v_instructor_id NUMBER

:= &sv_instructor_id;

new 2: v_instructor_id NUMBER

:= 100;

An error has occurred

PL/SQL procedure successfully

completed.

• This demonstrates not only

the use of the OTHERS

exception handler, but also a

bad programming practice.

• The exception OTHERS has

been raised because there is

no record in the

INSTRUCTOR table for

instructor ID 100.

EXCEPTION SCOPE

• The scope of an exception is the portion
of the block that is covered by this
exception.

• Even though variables and exceptions
serve different purposes, the same scope
rules apply to them.

Bordoloi and

Bock

Example
DECLARE

 v_student_id NUMBER := &sv_student_id;

 v_name VARCHAR2(30);

 v_total NUMBER(1);

-- outer block

BEGIN

 SELECT RTRIM(first_name)||' '||RTRIM(last_name)

 INTO v_name

 FROM student

 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE('Student name is '||v_name);

 -- inner block

 BEGIN

 SELECT COUNT(*)

 INTO v_total

Bordoloi and

Bock

Example
 FROM enrollment

 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE

 ('Student is registered for '||v_total||'
course(s)');

 EXCEPTION

 WHEN VALUE_ERROR OR
INVALID_NUMBER

 THEN

 DBMS_OUTPUT.PUT_LINE('An error has
 occurred');

 END;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 DBMS_OUTPUT.PUT_LINE('There is no such student');

END;

Bordoloi and

Bock

Example explained

• The inner block has structure similar to
the outer block.

• It has a SELECT INTO statement and an
exception section to handle errors.

• When VALUE_ERROR or
INVALID_NUMBER error occurs in the
inner block, the exception is raised.

• It is important that you realize that
exceptions VALUE_ERROR and
INVALID_NUMBER have been defined for
the inner block only.

• Therefore, they can be raised in the
inner block only.

• If one of these errors occurs in the outer
block, this program will be unable to
terminate successfully.

Bordoloi and

Bock

Example explained

• The exception NO_DATA_FOUND has
been defined in the outer block; therefore,
it is global to the inner block.

• This example will never raise the
exception NO_DATA_FOUND in the inner
block as it contains a group function in the
SELECT statement.

• It is important to note that if you define
an exception in a block, it is local to that
block.

• However, it is global to any blocks
enclosed by that block.

• In other words, in the case of nested
blocks, any exception defined in the outer
block becomes global to its inner blocks.

Bordoloi and

Bock

User Defined Exceptions

• Often in your programs you may need to
handle problems that are specific to the
program you write.

• For example, your program asks a user to
enter a value for student_id. This value is
then assigned to the variable v_student_id
that is used later in the program.

• Generally, you want a positive number for
an id. By mistake, the user enters a
negative number.

• However, no error has occurred because
student_id has been defined as a number,
and the user has supplied a legitimate
numeric value.

• Therefore, you may want to implement
your own exception to handle this
situation.

Bordoloi and

Bock

User Defined Exceptions

• This type of an exception is called a user-
defined exception because it is defined by
the programmer.

• Before the exception can be used, it must
be declared.

• A user-defined exception is declared in the
declarative part of a PL/SQL block as
shown below:

 DECLARE
 exception_name EXCEPTION;

• Once an exception has been declared, the
executable statements associated with this
exception are specified in the exception-
handling section of the block.

• The format of the exception-handling
section is the same as for built-in
exceptions.

Bordoloi and

Bock

Example

 DECLARE

 e_invalid_id EXCEPTION;

 BEGIN

 …

 EXCEPTION

 WHEN e_invalid_id

 THEN

 DBMS_OUTPUT.PUT_LINE ('An id
cannot be negative');

 END;

Bordoloi and

Bock

Raising Exception

• A user-defined
exception must be
raised explicitly.

• In other words, you
need to specify in
your program under
which circumstances
an exception must
be raised as shown :

Bordoloi and

Bock

DECLARE

 exception_name

EXCEPTION;

BEGIN

 …

 IF CONDITION

 THEN

 RAISE exception_name;

 ELSE

 …

 END IF;

EXCEPTION

 WHEN exception_name

 THEN

 ERROR-

PROCESSING

 STATEMENTS;

END;

EXCEPTION PROPAGATION

• A runtime error may occur in the
executable section, declaration section of
the block or in the exception-handling
section of the block.

• The rules that govern how exceptions are
raised in these situations are referred to
as exception propagation.

Bordoloi and

Bock

EXCEPTION PROPAGATION

• When a runtime error occurs in the
executable section of the PL/SQL block, If
there is an exception specified associated
with a particular error, the control is passed
to the exception-handling section of the
block.

• Once the statements associated with the
exception are executed, the control is passed
to the host environment or to the enclosing
block.

• If there is no exception handler for this error,
the exception is propagated to the enclosing
block (outer block).

• Then, the steps described above are repeated
again.

• If no exception handler is found, the
execution of the program halts, and the
control is transferred to the host
environment.

Bordoloi and

Bock

EXCEPTION PROPAGATION

• When a runtime error occurs in the
declaration section of the block and if
there is no outer block, the execution of
the program halts, and the control is
passed to the host environment.

• When a runtime error occurs in the
declaration section of the PL/SQL block,
the exception-handling section of this
block will not be able to catch the error.

• When a runtime error occurs in the
declaration section of the inner block, the
exception immediately propagates to the
enclosing (outer) block.

Bordoloi and

Bock

EXCEPTION PROPAGATION

• When a run time error occurs in the
exception-handling section, just like in the
previous case, if there is no outer block,
the execution of the program halts, and
the control is passed to the host
environment.

• When a runtime error occurs in the
exception-handling section of the PL/SQL
block, the exception-handling section of
this block is not able to prevent the error.

• When a runtime error occurs in the
exception-handling section of the inner
block, the exception immediately
propagates to the enclosing block.

Bordoloi and

Bock

EXCEPTION PROPAGATION

• Only one exception can be raised in the
exception-handling section of the block.

• Only after one exception has been
handled, another can be raised, but two
or more exceptions cannot be raised
simultaneously.

Bordoloi and

Bock

Example

--outer block

DECLARE

 e_exception1 EXCEPTION;

 e_exception2 EXCEPTION;

BEGIN

 -- inner block

 BEGIN

 RAISE e_exception1;

 EXCEPTION

 WHEN e_exception1

 THEN

 RAISE e_exception2;

Bordoloi and

Bock

Example contd.

 WHEN e_exception2

 THEN

 DBMS_OUTPUT.PUT_LINE („An error has
occurred in the inner‟|| „block‟);

 END;

EXCEPTION

WHEN e_exception2

THEN

 DBMS_OUTPUT.PUT_LINE („An error has
occurred in the program‟);

END;

Bordoloi and

Bock

Output
An error has occurred in the program

PL/SQL procedure successfully completed.

• Here two exceptions are declared:
e_exception1 and e_exception2.

• The exception e_exception1 is raised in
the inner block via statement RAISE.

• In the exception-handling section of the
block, the exception e_exception1 tries to
raise e_exception2.

• Even though there is an exception handler
for the exception e_exception2, the
control is transferred to the outer block.

• This happens because only one exception
can be raised in the exception-handling
section of the block.

Bordoloi and

Bock

RERAISING AN EXCEPTION
• On some occasions you may want to be

able to stop your program if a certain type
of error occurs.

• In other words, you may want to handle
an exception in the inner block and then
pass it to the outer block.

• This process is called reraising an
exception. The following example
illustrates this point.

Bordoloi and

Bock

-- outer block

DECLARE

 e_exception
EXCEPTION;

BEGIN

 -- inner block

 BEGIN

 RAISE e_exception;

 EXCEPTION

 WHEN e_exception

 THEN

 RAISE;

 END;

EXCEPTION

WHEN e_exception

THEN

DBMS_OUTPUT.PUT_LINE
(„An error has
occurred‟);

END;

Bordoloi and

Bock

Output

The error has occurred

PL/SQL procedure

successfully

completed.

The exception, e_exception,

is declared in the outer

block.

It is raised in the inner block.

As a result, the control is

transferred to the

exception handling

section of the inner

block.

The statement RAISE in the

exception-handling

section of the block

causes the exception to

propagate to the

exception-handling

section of the outer

block.

RERAISING AN EXCEPTION
• It is important to note that when an

exception is reraised in the block that is
not enclosed by any other block, the
program is unable to complete
successfully

 DECLARE

 e_exception EXCEPTION;

 BEGIN

 RAISE e_exception;

 EXCEPTION

 WHEN e_exception

 THEN

 RAISE;

 END;

Bordoloi and

Bock

Output
 DECLARE

 *

 ERROR at line 1:

 ORA-06510: PL/SQL: unhandled user-
defined exception

 ORA-06512: at line 8

Bordoloi and

Bock

Instructor Signature (with date)

(with date)

Supervisor’s signature

Experiment -14

Triggers

Objective:

To automate database operations using triggers.

Details:

 Trigger: A stored procedure that automatically executes in response to specific events.

 Types:

o Before Triggers: Execute before an operation (e.g., BEFORE INSERT).

o After Triggers: Execute after an operation (e.g., AFTER UPDATE).

 Applications:

o Enforce business rules.

o Audit database changes.

o Maintain log tables.

Activities:

 Create triggers to log changes in critical tables.

 Implement triggers for data validation before inserts.

Sample Code:

CREATE OR REPLACE TRIGGER log_changes

AFTER INSERT ON Employee

FOR EACH ROW

BEGIN

INSERT INTO AuditLog (EmpID, ChangeDate)

VALUES (:NEW.EmpID, SYSDATE);

END;

/

Task:

 Create a trigger to automatically update stock quantities after a sale.

Practice Problems:

Triggers

 A trigger is a statement that is executed

automatically by the system as a side effect of a

modification to the database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the

trigger is to be executed.

 Specify the actions to be taken when the

trigger executes.

 Triggers introduced to SQL standard in

SQL:1999, but supported even earlier using

non-standard syntax by most databases.

 Syntax illustrated here may not work exactly

on your database system; check the system

manuals

Trigger Example

 E.g. time_slot_id is not a primary key of timeslot, so we

cannot create a foreign key constraint from section to

timeslot.

 Alternative: use triggers on section and timeslot to

enforce integrity constraints

 create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row

when (nrow.time_slot_id not in (

 select time_slot_id

 from time_slot)) /* time_slot_id not present in

time_slot */

begin

 rollback

end;

Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot

referencing old row as orow

for each row

when (orow.time_slot_id not in (

 select time_slot_id

 from time_slot)

 /* last tuple for time slot id deleted from time slot */

 and orow.time_slot_id in (

 select time_slot_id

 from section)) /* and time_slot_id still referenced

from section*/

begin

 rollback

end;

Triggering Events and Actions in

SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific
attributes

 E.g., after update of takes on grade

 Values of attributes before and after an update can
be referenced

 referencing old row as : for deletes and
updates

 referencing new row as : for inserts and
updates

 Triggers can be activated before an event, which
can serve as extra constraints. E.g. convert blank
grades to null.

 create trigger setnull_trigger before update of
takes
 referencing new row as nrow
 for each row
 when (nrow.grade = ‗ ‗)
 begin atomic
 set nrow.grade = null;
 end;

Trigger to Maintain credits_earned

value

 create trigger credits_earned after update of takes

on (grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> ‘F‘ and nrow.grade is not null

 and (orow.grade = ‘F‘ or orow.grade is null)

begin atomic

 update student

 set tot_cred= tot_cred +

 (select credits

 from course

 where course.course_id= nrow.course_id)

 where student.id = nrow.id;

end;

Statement Level Triggers

 Instead of executing a separate action for each

affected row, a single action can be executed for

all rows affected by a transaction

 Use for each statement instead of for

each row

 Use referencing old table or

referencing new table to refer to temporary

tables (called transition tables) containing

the affected rows

 Can be more efficient when dealing with SQL

statements that update a large number of rows

When Not To Use Triggers

 Triggers were used earlier for tasks such as

 maintaining summary data (e.g., total salary of each

department)

 Replicating databases by recording changes to special

relations (called change or delta relations) and having

a separate process that applies the changes over to a

replica

 There are better ways of doing these now:

 Databases today provide built in materialized view

facilities to maintain summary data

 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in

many cases

 Define methods to update fields

 Carry out actions as part of the update methods instead

of

through a trigger

When Not To Use Triggers

 Risk of unintended execution of triggers, for example,

when

 loading data from a backup copy

 replicating updates at a remote site

 Trigger execution can be disabled before such

actions.

 Other risks with triggers:

 Error leading to failure of critical transactions that

set off the trigger

 Cascading execution

Oracle Example 1

A trigger that corrects mixed-case state names
CREATE OR REPLACE TRIGGER vendors_before_update_state

BEFORE INSERT OR UPDATE OF vendor_state

ON vendors

FOR EACH ROW

WHEN (NEW.vendor_state != UPPER(NEW.vendor_state))

BEGIN

 :NEW.vendor_state := UPPER(:NEW.vendor_state);

END;

/

Oracle Example 1

An UPDATE statement that fires the trigger
UPDATE vendors

SET vendor_state = 'wi'

WHERE vendor_id = 1;

A SELECT statement that shows the new row
SELECT vendor_name, vendor_state

FROM vendors

WHERE vendor_id = 1;

The result set

Oracle Example 2

A trigger that validates line item amounts
CREATE OR REPLACE TRIGGER invoices_before_update_total

BEFORE UPDATE OF invoice_total

ON invoices

FOR EACH ROW

DECLARE

 sum_line_item_amount NUMBER;

BEGIN

 SELECT SUM(line_item_amt)

 INTO sum_line_item_amount

 FROM invoice_line_items

 WHERE invoice_id = :new.invoice_id;

 IF sum_line_item_amount != :new.invoice_total THEN

 RAISE_APPLICATION_ERROR(-20001,

 'Line item total must match invoice total.');

 END IF;

END;

/

Oracle Example 2

An UPDATE statement that fires the trigger
UPDATE invoices

SET invoice_total = 600

WHERE invoice_id = 100;

The response from the system
ORA-20001: Line item total must match invoice total.

Oracle Example 3

An AFTER trigger that inserts rows into the table
CREATE OR REPLACE TRIGGER invoices_after_dml

AFTER INSERT OR UPDATE OR DELETE

ON invoices

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 INSERT INTO invoices_audit VALUES

 (:new.vendor_id, :new.invoice_number,

 :new.invoice_total, 'INSERTED', SYSDATE);

 ELSIF UPDATING THEN

 INSERT INTO invoices_audit VALUES

 (:old.vendor_id, :old.invoice_number,

 :old.invoice_total, 'UPDATED', SYSDATE);

 ELSIF DELETING THEN

 INSERT INTO invoices_audit VALUES

 (:old.vendor_id, :old.invoice_number,

 :old.invoice_total, 'DELETED', SYSDATE);

 END IF;

END;

/

Oracle Example 3

An INSERT statement that fires the trigger
INSERT INTO invoices VALUES

(115, 34, 'ZXA-080', '30-AUG-14', 14092.59, 0, 0, 3,

'30-SEP-14', NULL);

A DELETE statement that fires the trigger
DELETE FROM invoices WHERE invoice_number = 'ZXA-080';

A statement that retrieves the audit table rows
SELECT * FROM invoices_deleted;

The result set

 Create a cursor to list students with grades above 75 in a Marks table.

Practice Problems:

1. Write a cursor to display employee details from the Employee table.

2. Use a cursor to calculate total sales for each product.

3. Develop a cursor to fetch and display student details in a loop.

Instructor Signature (with date) Supervisor’s signature (with date)

Experiment -16

Transactions

Objective:

To ensure database consistency and integrity by grouping operations into transactions.

Details:

 ACID Properties:

o Atomicity: All operations in a transaction are completed, or none are.

o Consistency: Data remains in a valid state before and after a transaction.

o Isolation: Transactions are executed independently of others.

o Durability: Changes are permanent after a transaction is committed.

 Commands:

o COMMIT: Save changes permanently.

o ROLLBACK: Undo changes in a transaction.

o SAVEPOINT: Create intermediate checkpoints in a transaction.

Activities:

 Write queries to implement transactions using COMMIT and ROLLBACK.

 Practice using SAVEPOINT to manage complex transactions.

Sample Code:

 Transaction Concept

 Transaction State

 Concurrent Executions

 Serializability

 Recoverability

 Implementation of Isolation

 Transaction Definition in SQL

 Testing for Serializability.

Outline

©Silberschatz, Korth and Sudarshan 17.261 Database System Concepts - 7th Edition

Transaction Concept

 A transaction is a unit of program execution that accesses and

possibly updates various data items.

 E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Two main issues to deal with:

• Failures of various kinds, such as hardware failures and

system crashes

• Concurrent execution of multiple transactions

©Silberschatz, Korth and Sudarshan 17.262 Database System Concepts - 7th Edition

Example of Fund Transfer

 Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Atomicity requirement

• If the transaction fails after step 3 and before step 6, money will

be “lost” leading to an inconsistent database state

 Failure could be due to software or hardware

• The system should ensure that updates of a partially executed

transaction are not reflected in the database

 Durability requirement — once the user has been notified that the

transaction has completed (i.e., the transfer of the $50 has taken

place), the updates to the database by the transaction must persist

even if there are software or hardware failures.

©Silberschatz, Korth and Sudarshan 17.263 Database System Concepts - 7th Edition

Example of Fund Transfer (Cont.)

 Consistency requirement in above example:

• The sum of A and B is unchanged by the execution of the

transaction

 In general, consistency requirements include

• Explicitly specified integrity constraints such as primary keys

and foreign keys

• Implicit integrity constraints

 e.g., sum of balances of all accounts, minus sum of loan

amounts must equal value of cash-in-hand

• A transaction must see a consistent database.

• During transaction execution the database may be temporarily

inconsistent.

• When the transaction completes successfully the database

must be consistent

 Erroneous transaction logic can lead to inconsistency

©Silberschatz, Korth and Sudarshan 17.264 Database System Concepts - 7th Edition

Example of Fund Transfer (Cont.)

 Isolation requirement — if between steps 3 and 6, another

transaction T2 is allowed to access the partially updated

database, it will see an inconsistent database (the sum A + B

will be less than it should be).

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

 Isolation can be ensured trivially by running transactions
serially

• That is, one after the other.

 However, executing multiple transactions concurrently has

significant benefits, as we will see later.

©Silberschatz, Korth and Sudarshan 17.265 Database System Concepts - 7th Edition

ACID Properties

 Atomicity. Either all operations of the transaction are properly

reflected in the database or none are.

 Consistency. Execution of a transaction in isolation preserves

the consistency of the database.

 Isolation. Although multiple transactions may execute

concurrently, each transaction must be unaware of other

concurrently executing transactions. Intermediate transaction

results must be hidden from other concurrently executed

transactions.

• That is, for every pair of transactions Ti and Tj, it appears to

Ti that either Tj, finished execution before Ti started, or Tj

started execution after Ti finished.

 Durability. After a transaction completes successfully, the

changes it has made to the database persist, even if there are

system failures.

A transaction is a unit of program execution that accesses and

possibly updates various data items. To preserve the integrity of

data the database system must ensure:

©Silberschatz, Korth and Sudarshan 17.266 Database System Concepts - 7th Edition

Transaction State

 Active – the initial state; the transaction stays in this state

while it is executing

 Partially committed – after the final statement has been

executed.

 Failed -- after the discovery that normal execution can no

longer proceed.

 Aborted – after the transaction has been rolled back and the

database restored to its state prior to the start of the

transaction. Two options after it has been aborted:

• Restart the transaction

 Can be done only if no internal logical error

• Kill the transaction

 Committed – after successful completion.

©Silberschatz, Korth and Sudarshan 17.267 Database System Concepts - 7th Edition

Transaction State (Cont.)

©Silberschatz, Korth and Sudarshan 17.268 Database System Concepts - 7th Edition

Concurrent Executions

 Multiple transactions are allowed to run concurrently in the

system. Advantages are:

• Increased processor and disk utilization, leading to

better transaction throughput

 E.g., one transaction can be using the CPU while

another is reading from or writing to the disk

• Reduced average response time for transactions: short

transactions need not wait behind long ones.

 Concurrency control schemes – mechanisms to achieve

isolation

• That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the

consistency of the database

 Will study in Chapter 15, after studying notion of

correctness of concurrent executions.

©Silberschatz, Korth and Sudarshan 17.269 Database System Concepts - 7th Edition

Schedules

 Schedule – a sequences of instructions that specify the

chronological order in which instructions of concurrent

transactions are executed

• A schedule for a set of transactions must consist of all

instructions of those transactions

• Must preserve the order in which the instructions appear in

each individual transaction.

 A transaction that successfully completes its execution will

have a commit instructions as the last statement

• By default transaction assumed to execute commit

instruction as its last step

 A transaction that fails to successfully complete its execution

will have an abort instruction as the last statement

©Silberschatz, Korth and Sudarshan 17.270 Database System Concepts - 7th Edition

Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the

balance from A to B.

 A serial schedule in which T1 is followed by T2 :

©Silberschatz, Korth and Sudarshan 17.271 Database System Concepts - 7th Edition

Schedule 2

 A serial schedule where T2 is followed by T1

©Silberschatz, Korth and Sudarshan 17.272 Database System Concepts - 7th Edition

Schedule 3

 Let T1 and T2 be the transactions defined previously. The

following schedule is not a serial schedule, but it is equivalent to

Schedule 1

 In Schedules 1, 2 and 3, the sum A + B is preserved.

©Silberschatz, Korth and Sudarshan 17.273 Database System Concepts - 7th Edition

Schedule 4

 The following concurrent schedule does not preserve the value of

(A + B).

©Silberschatz, Korth and Sudarshan 17.274 Database System Concepts - 7th Edition

Serializability

 Basic Assumption – Each transaction preserves database

consistency.

 Thus, serial execution of a set of transactions preserves database

consistency.

 A (possibly concurrent) schedule is serializable if it is equivalent

to a serial schedule. Different forms of schedule equivalence give

rise to the notions of:

1. Conflict serializability

2. View serializability

©Silberschatz, Korth and Sudarshan 17.275 Database System Concepts - 7th Edition

Simplified view of transactions

 We ignore operations other than read and write instructions

 We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and

writes.

 Our simplified schedules consist of only read and write

instructions.

©Silberschatz, Korth and Sudarshan 17.276 Database System Concepts - 7th Edition

Conflicting Instructions

 Instructions li and lj of transactions Ti and Tj respectively,

conflict if and only if there exists some item Q accessed by

both li and lj, and at least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

 2. li = read(Q), lj = write(Q). They conflict.

 3. li = write(Q), lj = read(Q). They conflict

 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal

order between them.

 If li and lj are consecutive in a schedule and they do not

conflict, their results would remain the same even if they had

been interchanged in the schedule.

©Silberschatz, Korth and Sudarshan 17.277 Database System Concepts - 7th Edition

Conflict Serializability

 If a schedule S can be transformed into a schedule S’ by a

series of swaps of non-conflicting instructions, we say that S

and S’ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is conflict

equivalent to a serial schedule

©Silberschatz, Korth and Sudarshan 17.278 Database System Concepts - 7th Edition

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6, a serial schedule

where T2 follows T1, by series of swaps of non-conflicting

instructions. Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

©Silberschatz, Korth and Sudarshan 17.279 Database System Concepts - 7th Edition

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to

obtain either the serial schedule < T3, T4 >, or the serial

schedule < T4, T3 >.

©Silberschatz, Korth and Sudarshan 17.280 Database System Concepts - 7th Edition

View Serializability

 Let S and S’ be two schedules with the same set of transactions.

S and S’ are view equivalent if the following three conditions

are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q,

then in

 schedule S’ also transaction Ti must read the initial value of

Q.

2. If in schedule S transaction Ti executes read(Q), and that

value was

 produced by transaction Tj (if any), then in schedule S’ also

 transaction Ti must read the value of Q that was produced

by the

 same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q)

operation in

 schedule S must also perform the final write(Q) operation

in schedule S’.

 As can be seen, view equivalence is also based purely on

reads and writes alone.

©Silberschatz, Korth and Sudarshan 17.281 Database System Concepts - 7th Edition

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a

serial schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict

serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict

serializable has blind writes.

©Silberschatz, Korth and Sudarshan 17.282 Database System Concepts - 7th Edition

Other Notions of Serializability

 The schedule below produces same outcome as the

serial schedule < T1, T5 >, yet is not conflict equivalent or

view equivalent to it.

 Determining such equivalence requires analysis of

operations other than read and write.

©Silberschatz, Korth and Sudarshan 17.283 Database System Concepts - 7th Edition

Testing for Serializability

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are

the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose

earlier.

 We may label the arc by the item that was accessed.

 Example of a precedence graph

©Silberschatz, Korth and Sudarshan 17.284 Database System Concepts - 7th Edition

Test for Conflict Serializability

 A schedule is conflict serializable if

and only if its precedence graph is

acyclic.

 Cycle-detection algorithms exist

which take order n2 time, where n is

the number of vertices in the graph.

• (Better algorithms take order n +

e where e is the number of

edges.)

 If precedence graph is acyclic, the

serializability order can be obtained

by a topological sorting of the graph.

• This is a linear order consistent

with the partial order of the graph.

• For example, a serializability

order for Schedule A would be

T5  T1  T3  T2  T4

 Are there others?

©Silberschatz, Korth and Sudarshan 17.285 Database System Concepts - 7th Edition

Test for View Serializability

 The precedence graph test for conflict serializability cannot

be used directly to test for view serializability.

• Extension to test for view serializability has cost

exponential in the size of the precedence graph.

 The problem of checking if a schedule is view serializable

falls in the class of NP-complete problems.

• Thus, existence of an efficient algorithm is extremely

unlikely.

 However practical algorithms that just check some sufficient

conditions for view serializability can still be used.

©Silberschatz, Korth and Sudarshan 17.286 Database System Concepts - 7th Edition

Recoverable Schedules

 Recoverable schedule — if a transaction Tj reads a data item

previously written by a transaction Ti , then the commit

operation of Ti appears before the commit operation of Tj.

 The following schedule (Schedule 11) is not recoverable

 If T8 should abort, T9 would have read (and possibly shown to

the user) an inconsistent database state. Hence, database

must ensure that schedules are recoverable.

Need to address the effect of transaction failures on concurrently

running transactions.

©Silberschatz, Korth and Sudarshan 17.287 Database System Concepts - 7th Edition

Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a

series of transaction rollbacks. Consider the following

schedule where none of the transactions has yet committed (so

the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

©Silberschatz, Korth and Sudarshan 17.288 Database System Concepts - 7th Edition

Cascadeless Schedules

 Cascadeless schedules — cascading rollbacks cannot occur;

• For each pair of transactions Ti and Tj such that Tj reads a

data item previously written by Ti, the commit operation of

Ti appears before the read operation of Tj.

 Every Cascadeless schedule is also recoverable

 It is desirable to restrict the schedules to those that are

cascadeless

©Silberschatz, Korth and Sudarshan 17.289 Database System Concepts - 7th Edition

Concurrency Control

 A database must provide a mechanism that will ensure that all

possible schedules are

• either conflict or view serializable, and

• are recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time

generates serial schedules, but provides a poor degree of

concurrency

• Are serial schedules recoverable/cascadeless?

 Testing a schedule for serializability after it has executed is a

little too late!

 Goal – to develop concurrency control protocols that will assure

serializability.

©Silberschatz, Korth and Sudarshan 17.290 Database System Concepts - 7th Edition

Concurrency Control (Cont.)

 Schedules must be conflict or view serializable, and

recoverable, for the sake of database consistency, and

preferably cascadeless.

 A policy in which only one transaction can execute at a time

generates serial schedules, but provides a poor degree of

concurrency.

 Concurrency-control schemes tradeoff between the amount of

concurrency they allow and the amount of overhead that they

incur.

 Some schemes allow only conflict-serializable schedules to be

generated, while others allow view-serializable schedules that

are not conflict-serializable.

©Silberschatz, Korth and Sudarshan 17.291 Database System Concepts - 7th Edition

Concurrency Control vs. Serializability

Tests

 Concurrency-control protocols allow concurrent schedules, but

ensure that the schedules are conflict/view serializable, and are

recoverable and cascadeless .

 Concurrency control protocols (generally) do not examine the

precedence graph as it is being created

• Instead a protocol imposes a discipline that avoids non-

serializable schedules.

• We study such protocols in Chapter 16.

 Different concurrency control protocols provide different

tradeoffs between the amount of concurrency they allow and

the amount of overhead that they incur.

 Tests for serializability help us understand why a concurrency

control protocol is correct.

©Silberschatz, Korth and Sudarshan 17.292 Database System Concepts - 7th Edition

Weak Levels of Consistency

 Some applications are willing to live with weak levels of

consistency, allowing schedules that are not serializable

• E.g., a read-only transaction that wants to get an

approximate total balance of all accounts

• E.g., database statistics computed for query optimization

can be approximate (why?)

• Such transactions need not be serializable with respect to

other transactions

 Tradeoff accuracy for performance

©Silberschatz, Korth and Sudarshan 17.293 Database System Concepts - 7th Edition

Levels of Consistency in SQL-92

 Serializable — default

 Repeatable read — only committed records to be read.

• Repeated reads of same record must return same value.

• However, a transaction may not be serializable – it may

find some records inserted by a transaction but not find

others.

 Read committed — only committed records can be read.

• Successive reads of record may return different (but

committed) values.

 Read uncommitted — even uncommitted records may be

read.

©Silberschatz, Korth and Sudarshan 17.294 Database System Concepts - 7th Edition

Levels of Consistency

 Lower degrees of consistency useful for gathering approximate

information about the database

 Warning: some database systems do not ensure serializable

schedules by default

 E.g., Oracle (and PostgreSQL prior to version 9) by default

support a level of consistency called snapshot isolation (not

part of the SQL standard)

©Silberschatz, Korth and Sudarshan 17.295 Database System Concepts - 7th Edition

Transaction Definition in SQL

 In SQL, a transaction begins implicitly.

 A transaction in SQL ends by:

• Commit work commits current transaction and begins a

new one.

• Rollback work causes current transaction to abort.

 In almost all database systems, by default, every SQL statement

also commits implicitly if it executes successfully

• Implicit commit can be turned off by a database directive

 E.g., in JDBC -- connection.setAutoCommit(false);

 Isolation level can be set at database level

 Isolation level can be changed at start of transaction

 E.g. In SQL set transaction isolation level

serializable

 E.g. in JDBC -- connection.setTransactionIsolation(

Connection.TRANSACTION_SERIALIZABLE)

©Silberschatz, Korth and Sudarshan 17.296 Database System Concepts - 7th Edition

Implementation of Isolation Levels

 Locking

• Lock on whole database vs lock on items

• How long to hold lock?

• Shared vs exclusive locks

 Timestamps

• Transaction timestamp assigned e.g. when a transaction

begins

• Data items store two timestamps

 Read timestamp

 Write timestamp

• Timestamps are used to detect out of order accesses

 Multiple versions of each data item

• Allow transactions to read from a ―snapshot‖ of the

database

©Silberschatz, Korth and Sudarshan 17.297 Database System Concepts - 7th Edition

Transactions as SQL Statements

 E.g., Transaction 1:

 select ID, name from instructor where salary > 90000

 E.g., Transaction 2:

 insert into instructor values ('11111', 'James', 'Marketing',

100000)

 Suppose

• T1 starts, finds tuples salary > 90000 using index and locks

them

• And then T2 executes.

• Do T1 and T2 conflict? Does tuple level locking detect the

conflict?

• Instance of the phantom phenomenon

 Also consider T3 below, with Wu‘s salary = 90000

 update instructor

 set salary = salary * 1.1

 where name = 'Wu‘

 Key idea: Detect ―predicate‖ conflicts, and use some form of

―predicate locking‖

